next up previous contents
Next: Using pplane2d.m Up: Required Files and Descriptions Previous: ccquad.m   Contents

pend.m

This represents the system associated with the 2nd order, nonlinear, homogeneous ODE with constant coefficients that describes the motion of a damped pendulum.

\begin{eqnarray*}
\begin{array}{rcrcr} x' &=& y &=& F(x,y) \\ y' &=&
-\omega^2\...
... \right]\,
\left[\begin{array}{c}\sin x \\ y\end{array}\right]
\end{eqnarray*}




\begin{displaymath}\; \Longrightarrow \;\; \mbox{\tt A = [$\;$];} \quad \mbox{\tt B = [$0$, $1$;
$-\omega^2$, $-\gamma$];}\end{displaymath}

The linearization of this system is accomplished via the four partial derivatives

\begin{eqnarray*}
F_x(x,y) \;=\; 0, && F_y(x,y) \;=\; 1 \\ G_x(x,y) \;=\;
-\omega^2\,\cos x, && G_y(x,y) \;=\; -\gamma
\end{eqnarray*}



evaluated at any critical point $(x_0, y_0) \; \Longrightarrow \;$

\begin{eqnarray*}
\left[\begin{array}{c}x' \\ y'\end{array}\right] &\approx& \le...
...{array}{c}x \\ y\end{array}\right] \quad\mbox{near $(x_0,y_0)$}
\end{eqnarray*}



Once the linearization has been formed, we use cclin.m with

\begin{displaymath}\mbox{\tt A = [0,1; $-\omega^2\,\cos x_0$,$-\gamma$];} \quad
\mbox{\tt B = [$\;$];}\end{displaymath}

to investigate stability about each $(x_0, y_0)$.

The symbolicplot option `eigenvals' is useful only for the linearization.



Michael Renardy
2000-05-12