next up previous contents
Next: pend.m Up: Required Files and Descriptions Previous: cclin.m   Contents

ccquad.m

This represents the $2 \times 2$ autonomous system associated with two first order, quadratic ODEs with constant coefficients. Competing species and predator-prey models are forms of this system.

\begin{eqnarray*}
\lefteqn{\begin{array}{r*{6}{cr}} x' &=& a_1\,x &+& b_1\,y &+&...
...B = [$d_1$,$\beta_1$,$\gamma_1$;
$d_2$,$\beta_2$,$\gamma_2$];}
\end{eqnarray*}



The linearization of this system is accomplished via the four partial derivatives

\begin{eqnarray*}
F_x(x,y) \;=\; a_1 \,+\, d_1\,y \,+\, 2\,\beta_1\,x, && F_y(x,...
..._2\,x, && G_y(x,y) \;=\; b_2 \,+\,
d_2\,x \,+\, 2\,\gamma_2\,y
\end{eqnarray*}



evaluated at any critical point $(x_0, y_0) \; \Longrightarrow \;$

\begin{eqnarray*}
\left[\begin{array}{c}x' \\ y'\end{array}\right] &\approx& \le...
...array}{c}x \\ y\end{array}\right] \quad\mbox{near
$(x_0,y_0)$}
\end{eqnarray*}



Once the linearization has been formed, we use cclin.m with

\begin{displaymath}\mbox{\tt A = [$F_x(x_0,y_0)$,$F_y(x_0,y_0)$;
$G_x(x_0,y_0)$,$G_y(x_0,y_0)$];} \quad\mbox{\tt B = [$\;$];}\end{displaymath}

to investigate stability about each $(x_0, y_0)$.

The competing species and predator-prey forms are
Competing species

\begin{eqnarray*}
\begin{array}{rcrcrcr} x' &=& \epsilon_1\,x &-& \alpha_1\,xy &...
...,
& d_2 \,=\, -\alpha_2, & \beta_2 \,=\, -\sigma_2 \end{array}
\end{eqnarray*}



\begin{eqnarray*}
&\; \Longrightarrow \;& \mbox{\bf A}\;=\; \left[\begin{array}{...
...t B =
[$-\alpha_1$,$-\sigma_1$,0; $-\alpha_2$,0,$-\sigma_2$];}
\end{eqnarray*}



Predator-prey

\begin{eqnarray*}
\begin{array}{rcrcr} x' &=& a\,x \,-\, \alpha\,x\,y \\
y' &=&...
... \,=\, -\alpha \\ b_2 \,=\, -c,
& d_2 \,=\, \gamma \end{array}
\end{eqnarray*}



\begin{eqnarray*}
&\; \Longrightarrow \;& \mbox{\bf A}\;=\; \left[\begin{array}{...
... 0,$-c$];} \quad
\mbox{\tt B = [$-\alpha$,0,0; $\gamma$,0,0];}
\end{eqnarray*}



The symbolicplot option `eigenvals' is useful only for the linearization.



Michael Renardy
2000-05-12