Test Version A

Instructions: Fill in **A** in the Test Version section. Then enter your NAME, ID Number, CRN (under Class ID) and write **A** (under Test ID) on the op-scan sheet. Darken the appropriate circles below your ID number and Class ID (CRN). **Use a number 2 pencil**. Machine grading may ignore faintly marked circles.

Mark your answers to the test questions in rows 1–15 of the op-scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam, and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation.

Signature: _____

Name (printed): _____

Student ID #: _____

1. Which set is a basis for the null space of $\begin{bmatrix} 1 & 0 & 3 \\ 2 & -3 & 0 \\ -1 & 2 & 1 \end{bmatrix}$?

2. Which matrix corresponds to a linear transformation with range equal to \mathbb{R}^2 ?

$$(A) \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
$$(B) \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$(C) \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 4 \end{bmatrix}$$
$$(D) \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$

- 3. Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ be linearly independent vectors in \mathbb{R}^3 . Which statement is false?
 - (A) The vector $\boldsymbol{u} + \boldsymbol{v} + 2\boldsymbol{w}$ is in span $(\boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w})$.
 - (B) The zero vector is in $\operatorname{span}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$.
 - (C) The vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ span \mathbb{R}^3 .
 - (D) The vector \boldsymbol{w} is in span $(\boldsymbol{u}, \boldsymbol{v})$.

- 4. Which statement is **true** for any matrix A?
 - I. If rank(A) is equal to the number of columns of A, then the linear system $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} .
 - II. If rank(A) is equal to the number of rows of A, then the linear system $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} .
 - (A) Only I.
 - (B) Only II.
 - (C) Both I and II.
 - (D) Neither I nor II.
- 5. If \boldsymbol{u} and \boldsymbol{v} are vectors such that

$$\|\boldsymbol{u}\| = 3, \qquad \|\boldsymbol{v}\| = 2, \qquad \boldsymbol{u} \cdot \boldsymbol{v} = -1$$

then $(\mathbf{u} + 2\mathbf{v}) \cdot (\mathbf{u} + 2\mathbf{v})$ equals

- (A) 7.
- (B) 11.
- (C) 18.
- (D) 21.

6. Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Which statement is **true**?

- (A) Only A is diagonalizable.
- (B) Only B is diagonalizable.
- (C) Both A and B are diagonalizable.
- (D) Neither A nor B is diagonalizable.

7. Which set is a basis for the eigenspace of $\begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ corresponding to eigenvalue $\lambda = -1$?

$$(A) \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$
$$(B) \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$$
$$(C) \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$
$$(D) \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

8. Let a be a real number. The linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 5 & 4 & 3 & 2 \\ 7 & 7 & 7 & 7 & 7 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix}$$

has a solution

- (A) only if a = 0.
- (B) only if a = 7.
- (C) for all values of a.
- (D) for no value of a.

9. If A is a 7×11 matrix such that rank(A) = 5, then nullity (A^T) is equal to

- (A) 2.
- (B) 5.
- (C) 6.
- (D) Insufficient information to determine $\operatorname{nullity}(A^T)$.

10. Which statement is **true**?

11. Find the standard matrix of the linear map that acts on the xy-plane by a 90° clockwise rotation followed by reflection about the line y = x.

(A)	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
(B)	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
(C)	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
(D)	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

12. Which one of the following is a steady-state vector for the transition matrix $\begin{bmatrix} .6 & .3 \\ .4 & .7 \end{bmatrix}$?

(A)	$\begin{bmatrix} 3/4\\1\end{bmatrix}$
(B)	$\begin{bmatrix} 3\\1/4\end{bmatrix}$
(C)	$\begin{bmatrix} -3/4 \\ 1 \end{bmatrix}$
(D)	$\begin{bmatrix} 3/4\\ 1/4 \end{bmatrix}$

13. Let *a* be a real number. The matrix $\begin{bmatrix} 2 & 2 & 2 \\ 3 & 1 & a \\ 1 & 3 & 0 \end{bmatrix}$ is invertible

- (A) for all but one value of a.
- (B) for exactly one value of a.
- (C) for all values of a.
- (D) for no value of a.

14. Which set is an **orthogonal basis** for the column space of $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$?

(D) None of the above.

15. Which set is **not** a subspace of \mathbb{R}^3 ?

(A) null
$$\begin{pmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \end{pmatrix}$$

(B) span $\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{pmatrix}$
(C) $\begin{cases} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$

(D) All of the given sets are subspaces of \mathbb{R}^3 .