Test Version A

Instructions: Fill in A in the Test Version section. Then enter your NAME, ID Number, CRN (under Class ID) and write A (under Test ID) on the op-scan sheet. Darken the appropriate circles below your ID number and Class ID (CRN). Use a number 2 pencil. Machine grading may ignore faintly marked circles.

Mark your answers to the test questions in rows 1-14 of the op-scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam, and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation.

Signature: \qquad
Name (printed): \qquad
Student ID \#: \qquad

1. Let $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{n}$. Let S be the set of all vectors in \mathbb{R}^{n} that are orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}. That is,

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \cdot \mathbf{v}_{1}=0 \text { and } \mathbf{x} \cdot \mathbf{v}_{2}=0\right\}
$$

Which of the following statements is TRUE?
(A) S is a subspace of \mathbb{R}^{n}.
(B) S is not a subspace of \mathbb{R}^{n} because $\mathbf{0} \notin S$.
(C) S is not a subspace of \mathbb{R}^{n} because S is not closed under vector addition.
(D) S is not a subspace of \mathbb{R}^{n} because S is not closed under scalar multiplication.
2. Suppose that A is row equivalent to $\left[\begin{array}{rrrrrr}1 & 0 & -2 & 3 & 0 & -4 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$. Which of the following is a basis for $\operatorname{null}(A)$?
(A) $\left\{\left[\begin{array}{r}-2 \\ -2 \\ 0 \\ 0\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-4 \\ -7 \\ 4 \\ 0\end{array}\right]\right\}$
$(\mathrm{C})\left\{\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ -2 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}4 \\ 7 \\ 0 \\ 0 \\ -4 \\ 1\end{array}\right]\right\}$
(B) $\left\{\left[\begin{array}{r}1 \\ 0 \\ -2 \\ 3 \\ 0 \\ -4\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -2 \\ 2 \\ 0 \\ -7\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 4\end{array}\right]\right\}$
(D) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]\right\}$
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$ where $A=$ $\left[\begin{array}{rrr}1 & -5 & -3 \\ -3 & 15 & 9\end{array}\right]$. If $\left[\begin{array}{l}2 \\ b\end{array}\right]$ is in the range of T, find the value of b.
(A) 0
(B) -6
(C) There is more than one possible value for b.
(D) There is not enough information to compute b.
4. Find the rank of the following matrix A :

$$
A=\left[\begin{array}{rrrr}
1 & -4 & 9 & -7 \\
-1 & 2 & -4 & 1 \\
5 & -6 & 10 & 7
\end{array}\right]
$$

(A) $\operatorname{rank}(A)=1$
(B) $\operatorname{rank}(A)=2$
(C) $\operatorname{rank}(A)=3$
(D) $\operatorname{rank}(A)=4$
5. Let A be an $n \times n$ matrix. Suppose that there exists an $n \times n$ matrix B such that $A B=I_{n}$ and $B A=I_{n}$. Which of the following statements are TRUE?
(i) The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$.
(ii) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is not onto.
(iii) The equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
(iv) The columns of A span \mathbb{R}^{n}.
(v) A is invertible.
(A) (ii) and (iii) only
(C) (i), (iv), and (v) only
(B) (iv) and (v) only
(D) (i), (ii), (iv), and (v) only
6. Which of the following linear systems has a unique solution?
(A) $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\ 5 \\ 9\end{array}\right]$
(B) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
(C) Both (A) and (B).
(D) Neither (A) nor (B).
7. Find the determinant of the matrix A given by

$$
A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & 2 & 0 \\
x & y & -1
\end{array}\right]
$$

(A) $1+2 x+3 y$
(B) $1-2 x-3 y$
(C) $1+2 x-3 y$
(D) $1-2 x+3 y$
8. Consider the matrix $A=\left[\begin{array}{rr}-1 & \frac{1}{2} \\ 3 & -\frac{1}{2}\end{array}\right]$ and vector $\mathbf{v}=\left[\begin{array}{r}1 \\ -2\end{array}\right]$.

Define

$$
\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]=A^{k} \mathbf{v} .
$$

Which of the following describes the behavior of x_{k} as k grows large?
(A) x_{k} approaches 0 .
(B) x_{k} approaches a nonzero finite value.
(C) x_{k} becomes negative and large in magnitude.
(D) x_{k} grows large in magnitude and alternates in sign.
9. Suppose that A is an invertible $n \times n$ matrix and \mathbf{b} is a nonzero vector in \mathbb{R}^{n}. Consider the following statements:
(i) \mathbf{b} is in $\operatorname{col}(A)$.
(ii) \mathbf{b} is in $\operatorname{null}(A)$.

Which of the above statements are TRUE?
(A) (i) only
(C) Both (i) and (ii)
(B) (ii) only
(D) Neither (i) nor (ii)
10. S is a set of vectors in \mathbb{R}^{3} that are linearly independent, but do not span \mathbb{R}^{3}. What is the maximum number of vectors in S ?
(A) one
(C) three
(B) two
(D) S may contain any number of vectors.
11. If A and B are two invertible $n \times n$ square matrices, then
(A) $A B$ is also invertible and $(A B)^{-1}=A^{-1} B^{-1}$.
(B) $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
(C) $A+B$ is also invertible and $(A+B)^{-1}=A^{-1}+B^{-1}$.
(D) $A+B$ is also invertible and $(A+B)^{-1}=A^{-1}-B^{-1}$.
12. Let A be an $n \times n$ square matrix with exactly three distinct eigenvalues and the dimension of each of its eigenspaces is 2 or less. Given that A is diagonalizable, find the value of n.
(A) $3 \leq n \leq 6$
(B) $n<3$
(C) $n>6$
(D) There is not enough information to estimate the value of n.
13. Find the orthogonal projection of \mathbf{v} onto the subspace $W=\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ where

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(A) $\operatorname{proj}_{W}(\mathbf{v})=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$
(C) $\operatorname{proj}_{W}(\mathbf{v})=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$
(B) $\operatorname{proj}_{W}(\mathbf{v})=\left[\begin{array}{l}2 \\ 0 \\ 6\end{array}\right]$
(D) $\operatorname{proj}_{W}(\mathbf{v})=\left[\begin{array}{c}-1 / 2 \\ 0 \\ 3 / 2\end{array}\right]$
14. Let A and B be two $n \times n$ square matrices. Suppose that the first column of $A B$ is entirely zero, but the first column of B is not entirely zero. Then
(A) $\operatorname{det}(A) \neq 0$.
(B) $\operatorname{det}(A)$ cannot be computed with the given information.
(C) The columns of A are linearly dependent.
(D) There is not enough information on columns of A.

