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1. Let H =

{[
x
y

]
: x = 0 or y = 0

}
. Which of the following statements is true?

(a) H is a subspace of R2 because cu is in H for all scalars c and all v in H.

(b) H is a subspace of R2 because H spans R2.

(c) H is a subspace of R2 because the zero vector is in H.

(d) H is not a subspace of R2 because u + v is not in H for all u and v in H.

(e) H is not a subspace of R2 because cu is not in H for all scalars c and all v in H.

2. Let

A =

 1 2 1 3
2 4 4 5
1 2 3 2


A basis for Col A is given by

(a)


 1

2
1

 ,

 1
4
3


(b)


 1

0
0

 ,

 1
2
0


(c)


 1

2
1

 ,

 1
4
3

 ,

 3
5
2



(d)


 2

4
2

 ,

 1
4
3

 ,

 3
5
2


(e)


 1

2
1

 ,

 2
4
2

 ,

 1
4
3

 ,

 3
5
2



3. Find the eigenvalues of A =

[
3 −5
9 −3

]
(a) λ = 4, λ = −9

(b) λ = 3i, λ = −3i

(c) λ = 6i, λ = −6i

(d) λ = 3, λ = −3

(e) λ = 11, λ = −3

4. Let u, v be vectors in Rn with θ the angle between u and v. Then ‖u + v‖2 is equal to:

(a) ‖u‖2‖v‖2 cos θ

(b) ‖u‖2 + ‖v‖2

(c) ‖u‖2 − ‖v‖2

(d) ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ cos θ

(e) ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ



5. Suppose the matrix A =

 1 −1 −1 −1
0 2 −2 0
0 0 0 0

 is an echelon form of an augmented matrix.

Then the solution to the system represented by A is given by

(a)

 x1
x2
x3

 =

 2
1
1

+ x3

 −1
0
0

.

(b)

 x1
x2
x3

 = x3

 −1
0
0

+ x4

 −2
−1

1

.

(c)

 x1
x2
x3

 =

 −2
−1

0

+ x3

 −1
0
0

.

(d)

 x1
x2
x3

 =

 −1
0
0

+ x3

 2
1
1

.

(e)

 x1
x2
x3

 = x3

 2
1
1

+ x4

 −1
0
0

.

6. Find the determinant of the matrix

A =


1 −1 0 0 0
2 −1 0 0 0
0 0 3 1 4
0 0 2 3 4
0 0 0 1 0


(a) −4

(b) −2

(c) 4

(d) 8

(e) 12

7. T(x) : R2 → R2 is a linear transformation which first rotates points 90◦ counterclockwise about
the origin, and then reflects the plane across the y-axis. Find the standard matrix A such that
T(x) = Ax.

(a) A =

[
0 1
−1 0

]
(b) A =

[
0 1
1 0

]
(c) A =

[
0 −1
1 0

]
(d) A =

[
1 0
0 −1

]
(e) A =

[
−1 0

0 1

]



8. Suppose A = PB where A =

[
1 −1
2 −2

]
and P =

[
1 −2
−1 1

]
. Find the matrix B.

(a) B =

[
3 −3
−1 1

]
(b) B =

[
−5 5
−3 3

]
(c) B =

[
0 −1
0 −2

]
(d) B =

[
5/3 −5/3

1 −1

]
(e) Not possible because det(A) = 0

9. Let u be a nonzero vector in R5 and v be a nonzero vector in R3. What is the rank of the matrix
A = uvT?

(a) rank(A) = 4

(b) rank(A) = 3

(c) rank(A) = 2

(d) rank(A) = 1

(e) rank(A) = 0

10. Let A be an n× n matrix, T(x) = Ax, and b be a vector in Rn. If det(A) = 0, then which of the
following statements is true?

(a) The transformation T is one-to-one.

(b) The equation Ax = b has a unique solution.

(c) The equation Ax = 0 has a non-trivial solution.

(d) The columns of A span Rn.

(e) The columns of A form a basis for Rn.

11. Determine whether the statements are true or false.

(i) If A is an n× n matrix and Ax = 0 has a nontrivial solution, then the columns of A span Rn.

(ii) If B is invertible, then the row vectors of B are linearly independent.

(iii) If C is row equivalent to an invertible matrix D, then C is invertible.

(a) Statement (i) is false, and statements (ii) and (iii) are true.

(b) Statements (i) and (iii) are false, and statement (ii) is true.

(c) Statements (i) and (ii) are false, and statement (iii) is true.

(d) Statement (ii) is false, and statements (i) and (iii) are true.

(e) All three statements are true.



12. Let

A =


5 −1 3 −1
0 4 h 0
0 0 5 4
0 0 0 1

 .

Find h so that the eigenspace corresponding to the eigenvalue λ = 5 is 2-dimensional.

(a) h = 0

(b) h = 2

(c) h = 3

(d) h = 5

(e) h = 6

13. Which of the following statements are true for all 3× 3 matrices A and B?

I. (A− B)2 = A2 − 2AB + B2

II. (AB)2 = A2B2

III. (AB)−1 = A−1B−1

(a) I only.

(b) II only.

(c) III only.

(d) More than one statement.

(e) None of the statements.

14. Suppose the 2× 2 matrix A has eigenvalues λ1 = 4 and λ2 = 3, with eigenvectors v1 and v2,
respectively. If u = 5v1 + v2, then A2u is equal to

(a) 25v1 + v2

(b) 25v1 + 3v2

(c) 80v1 + 9v2

(d) 100v1 + 3v2

(e) 400v1 + 9v2



15. An n× n matrix B has characteristic polynomial p(λ) = −λ(λ− 3)3(λ− 2)2(λ + 1). Which of
the following statements is false?

(a) rank B = 6.

(b) det (B) = 0.

(c) det (BTB) = 0.

(d) B is invertible.

(e) n = 7.

16. Which of the following statements is false?

(a) Let S = {v1, v2, . . . , vm} be a subset of a vector space V with dim(V) = n. If m > n, then S
is linearly dependent.

(b) If A is an m× n matrix, then dim Nul A = n.

(c) If B is a basis for some finite dimensional vector space W, then the change of coordinates
matrix PB is always invertible.

(d) dim(R17) = 17.

(e) If B1 and B2 are both bases for the same vector space, then B1 and B2 have the same
number of vectors.


