Form A

Instructions: Fill in A, B or C in the Test Version section. Then enter your NAME, ID Number, CRN (under Class ID) and write A, B, or C (under Test ID) on the op-scan sheet. Darken the appropriate circles below your ID number and Class ID (CRN). **Use a number 2 pencil**. Machine grading may ignore faintly marked circles.

Mark your answers to the test questions in rows 1–14 of the op-scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation.

Signature: _____

Name (printed): _____

Student ID #: _____

1. The expression
$$\frac{1}{50} \left(\sqrt{\frac{1}{50}} + \sqrt{\frac{2}{50}} + \sqrt{\frac{3}{50}} + \dots + \sqrt{\frac{50}{50}} \right)$$
 is a Riemann sum approximation for

(A)
$$\int_{0}^{1} \sqrt{\frac{x}{50}} dx$$

(B) $\frac{1}{50} \int_{0}^{1} \sqrt{\frac{x}{50}} dx$
(C) $\int_{0}^{1} \sqrt{x} dx$
(D) $\frac{1}{50} \int_{0}^{1} \sqrt{x} dx$

- 2. Let $f(x) = 1 + \frac{\ln(x)}{x}$ for x > 0. Which of the following is true about f:
 - (A) It has a local maximum at x = 1.
 - (B) It has a local maximum at x = e.
 - (C) It has a local minimum at x = e.
 - (D) None of the above are true.
- 3. Which of the following graphs shows a function that satisfies the hypotheses of Rolle's Theorem on the interval [a, b]?

Page 2 of 5 — Form A

4. Find the derivative of $f(x) = \sqrt{\sin(x^2) + \cos^2(x)}$:

(A)
$$f'(x) = \frac{1}{2\sqrt{\sin(x^2) + \cos^2(x)}} (\cos(x^2) + 2\cos(x)) (2x - \sin(x))$$

(B) $f'(x) = \frac{\cos(x^2) \cdot 2x}{2\sqrt{\sin^2(x)}} - \sin(x).$
(C) $f'(x) = \frac{2x\cos(x^2) - 2\sin(x)\cos(x)}{2\sqrt{\sin(x^2) + \cos^2(x)}}$
(D) $f'(x) = 0$

5. "A five-gallon tank full of water starts draining at t = 0 at a rate of $\frac{1}{1+t}$ gallons per hour. How long until the tank is empty?"

A correct setup of the problem above in terms of functions is:

- (A) $f'(t) = \ln(1+t) + C$, f'(0) = 5, find t so that f'(t) = 0.
- (B) $f'(t) = -\frac{1}{1+t}$, f(0) = 0, find t so that f(t) = 5.
- (C) $f(t) = -\frac{1}{1+t} + C$, f(5) = 0, find t so that f(t) = 0.
- (D) None of these will give the correct solution.
- 6. Which of the following is TRUE?

(A)
$$\lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) = \left(\lim_{x \to 0} x^2 \right) \left(\lim_{x \to 0} \sin \frac{1}{x} \right)$$

(B)
$$\lim_{x \to 0} \frac{x}{x^2 + x} = \frac{\lim_{x \to 0} x}{\lim_{x \to 0} x^2 + x}$$

(C)
$$\lim_{x \to 0} \sin(e^x) = \sin \left(\lim_{x \to 0} e^x \right).$$

(D)
$$\lim_{x \to \infty} \left(\sqrt{x} - x \right) = \left(\lim_{x \to \infty} \sqrt{x} \right) - \left(\lim_{x \to \infty} x \right)$$

7. The edge of a cube is measured to be 20 inches. If the measurement is to be correct to within 1/10 inch, use differentials to find the error in the volume of the cube.

(A)
$$\pm \frac{1}{1000} \text{ in}^3$$
 (B) $\pm \frac{3}{100} \text{ in}^3$ (C) $\pm 120 \text{ in}^3$ (D) $\pm 240 \text{ in}^3$

8. The derivative
$$\frac{d}{dx} \left(\int_{2x}^{-1} \sin(t^2) dt \right)$$
 is:
(A) $-2x \cos(x^2) + C$
(B) $2 \cos(1) + 2 \cos(4x^2) + C$
(C) $\sin(x^2) - \sin(1)$
(D) $-2 \sin(4x^2)$

- 9. The curve given by the equation $(y x)^2 = 1 + yx$ defines y as an implicit function of x. What is the slope of the tangent line to the curve at the point (1,3)?
 - (A) $-\frac{1}{4}$ (B) $\frac{2}{3}$ (C) $\frac{7}{4}$ (D) $\frac{7}{3}$

10. The limit $\lim_{h \to 0} \frac{1 - (h + 1)}{h(h + 1)}$ is equal to which of the following? (A) f'(h) if $f(x) = \frac{1}{x + 1}$ (B) f'(0) if f(x) = x + 1(C) f'(0) if $f(x) = \frac{1}{x + 1}$ (D) f(0) if $f(x) = \frac{1}{x + 1}$

11. Using the method of *u*-substitution, the definite integral $\int_0^1 \frac{y^2 + 4y - 4}{\sqrt{y^3 + 6y^2 - 12y + 9}} dy$ is equivalent to which of the following integrals?

(A) $\int_{0}^{1} \frac{1}{\sqrt{u}} du$ (C) $-\int_{4}^{9} \frac{1}{3\sqrt{u}} du$ (B) $\int_{9}^{4} \frac{3}{\sqrt{u}} du$ (D) $\int_{4}^{9} \frac{1}{3\sqrt{u}} du$

12. If
$$\int_{a}^{b} f(x)dx = a + 2b$$
, then the evaluation of $\int_{a}^{b} (3f(x) + 5) dx$ is:
(A) $11b - 2a$ (B) $3a + 6b + 5$ (C) $3a - 6b$ (D) $3(a + 2b)(b - a) + 5$

13. A 15-meter ladder leans on a wall forming a right triangle. The bottom of the ladder is being pushed towards the wall at a speed of $\frac{1}{4}$ m/s. At what rate is the **area** of the triangle changing when the bottom of the ladder is 12 meters away from the wall? (The top of the ladder moves up at the speed of $\frac{1}{3}$ m/s at that point.)

(A)
$$-\frac{1}{24}$$
m²/s (B) $\frac{7}{8}$ m²/s (C) $\frac{7}{6}$ m²/s (D) 2m²/s

14. Let s(t) be the position function of an object. If the **velocity function** for the object is pictured below, then the total distance traveled over the time interval [0,3] is given by:

- (A) |s(1.5) s(0)| + |s(2.5) s(1.5)| + |s(3) s(2.5)|
- (B) |s(1) s(0)| + |s(3) s(1)|

(C)
$$|s(3) - s(0)|$$

(D) |s(1.5) - s(0)| + |s(3) - s(1.5)|