Math 2214, Spring 2014, Form A

1. Which of the following is a linear equation?
(a) $\left(t^{2} y^{\prime \prime}+y^{\prime}\right) / y=t^{3}$.
(b) $y^{\prime \prime \prime}-y^{\prime \prime}=y e^{y+t}$.
(c) $y^{\prime}=t / y$.
(d) $y^{\prime \prime}+y^{\prime}=y^{2}$.
2. If $x^{\prime}=x^{2} / t$, and $x(1)=1$, then $x(2)$ is
(a) $1 /(1-\ln 2)$.
(b) $1 /(1+\ln 2)$.
(c) $\sqrt{6}$.
(d) $\sqrt{2}$.
3. A lake contains 10^{8} gallons of water. The stream passing through the lake transports a constant 10^{6} gallons per day. A plant situated just upstream of the lake starts releasing 100 grams per day of a toxic chemical. Let Q denote the amount of chemical in the lake measured in grams, and t the time in days measured from the time when the pollution started. Assume that the lake is well mixed. Then Q satisfies the following equation
(a) $Q^{\prime}=10^{6}-Q / 10^{8}, Q(0)=100$.
(b) $Q^{\prime}=100-Q / 100, Q(0)=10^{8}$.
(c) $Q^{\prime}=100-Q / 100, Q(0)=0$.
(d) $Q^{\prime}=-Q / 100, Q(0)=100$.
4. For the system

$$
\begin{aligned}
x^{\prime} & =-x+5 y, \\
y^{\prime} & =-7 x+y,
\end{aligned}
$$

the origin is a
(a) focus.
(b) saddle.
(c) center.
(d) node.
5. The general solution of the system $y^{\prime}=A y$, where

$$
A=\left(\begin{array}{ll}
0 & 4 \\
1 & 0
\end{array}\right)
$$

is
(a) $c_{1} e^{-2 t}\binom{1}{-2}+c_{2} e^{2 t}\binom{1}{2}$.
(b) $c_{1} e^{-2 t}\binom{-2}{1}+c_{2} e^{2 t}\binom{2}{1}$.
(c) $c_{1} \cos (2 t)\binom{2}{1}+c_{2} \sin (2 t)\binom{1}{-2}$.
(d) $c_{1} t e^{2 t}\binom{2}{1}+c_{2} e^{2 t}\binom{1}{0}$.
6. A particular solution of the equation $y^{\prime \prime}+y=e^{t} / t$ should have the form
(a) $A e^{t} / t$.
(b) $A e^{t} / t^{2}$.
(c) $A e^{t}+B e^{t} / t$.
(d) $u(t) \sin t+v(t) \cos t$.
7. Which of the following is a direction field for the equation $y^{\prime}=y+t^{2}$?
(a)

(b)

(c)

> (d)

8. Which of the following is not a particular solution of the equation $y^{\prime \prime \prime \prime}-y=e^{t}$?
(a) $t e^{t} / 4+5 e^{t}$.
(b) $t e^{t} / 4+e^{-t}$.
(c) $t e^{t} / 4+t^{2} e^{t}+7 e^{t}$.
(d) $t e^{t} / 4+6 e^{t}+2 \sin t$.
9. You solve the initial value problem $y^{\prime}=y^{2}+t, y(0)=1$ using the Euler method with $h=0.2$. Then the approximation you find for $y(0.4)$ is
(a) 1.24 .
(b) 1.6275 .
(c) 1.528 .
(d) 1.2 .
10. The matrix

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

has how many linearly independent eigenvectors for the eigenvalue 1 ?
(a) One.
(b) Three.
(c) Four.
(d) Two.
11. Which of the following plots shows the solution of the problem $y^{\prime \prime}+$ $25 y=\cos (5 t), y(0)=1, y^{\prime}(0)=0$?
(a)

(b)

(c)

(d)

12. A nonlinear system is given by

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}^{2} x_{2}-x_{1} . \\
& x_{2}^{\prime}=x_{2} x_{1}-x_{1}^{2} .
\end{aligned}
$$

The linearization at the equilibrium point $(1,1)$ is the system
(a)

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2}, \\
& y_{2}^{\prime}=y_{2} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y_{1}^{\prime}=-y_{1}+y_{2}, \\
& y_{2}^{\prime}=-y_{1}+y_{2} .
\end{aligned}
$$

(c)

$$
\begin{gathered}
y_{1}^{\prime}=y_{1}+y_{2}, \\
y_{2}^{\prime}=y_{2} .
\end{gathered}
$$

(d)

$$
\begin{gathered}
y_{1}^{\prime}=y_{1}+y_{2} \\
y_{2}^{\prime}=-y_{1}+y_{2}
\end{gathered}
$$

