Test Version A

Instructions: Fill in **A** in the Test Version section. Then enter your NAME, ID Number, CRN (under Class ID) and write **A** (under Test ID) on the op-scan sheet. Darken the appropriate circles below your ID number and Class ID (CRN). **Use a number 2 pencil**. Machine grading may ignore faintly marked circles.

Mark your answers to the test questions in rows 1–14 of the op-scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam, and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation.

Signature: _____

Name (printed): _____

Student ID #: _____

 1. The rank of the matrix $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 3 & 3 \end{bmatrix}$ is
 (A) 0.
 (B) 1.
 (C) 2.
 (D) 3.

2. If
$$A\mathbf{x} = \begin{bmatrix} 11\\6 \end{bmatrix}$$
, and $A^{-1} = \begin{bmatrix} 2 & 5\\1 & 3 \end{bmatrix}$, then $\mathbf{x} =$
(A) $\begin{bmatrix} 3\\1 \end{bmatrix}$. (B) $\begin{bmatrix} -3\\-1 \end{bmatrix}$. (C) $\begin{bmatrix} 52\\29 \end{bmatrix}$. (D) $\begin{bmatrix} 77\\24 \end{bmatrix}$.

3. Which of the following is a steady state vector for the Markov chain with transition matrix P?

	P =	$\begin{array}{cccc} 1/5 & 4/5 & 2/5 \\ 1/5 & 0 & 1/5 \\ 3/5 & 1/5 & 2/5 \end{array}$	
(A) $\begin{bmatrix} 7\\3\\8 \end{bmatrix}$	(B) $\begin{bmatrix} 4\\0\\-4 \end{bmatrix}$	(C) $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$	(D) $\begin{bmatrix} 1\\ -5\\ 3 \end{bmatrix}$

- 4. Let V be a set of nonzero vectors in \mathbb{R}^n and $S = \operatorname{span}(V)$. Which of the following is **not** possible?
 - (A) V is a linearly independent set.
 - (B) S is a linearly independent set.
 - (C) Every vector in \mathbb{R}^n is a linear combination of the vectors in V.
 - (D) Every vector in \mathbb{R}^n is a linear combination of the vectors in S.

- 5. Suppose $p(\lambda) = \lambda(\lambda 1)(\lambda + 2)(\lambda + 1)$ is the characteristic polynomial of a matrix A. Consider the statements:
 - I: A must be a 4×4 matrix.
 - II: A can be diagonalized.
 - III: A is invertible.

Which of the statements I, II, and III are false?

- (A) Only I is false. (C) Only III is false.
- (B) Only II is false. (D) All of I, II, and III are true.

6. Determine whether or not V spans \mathbb{R}^2 and choose a correct justification:

$$V = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \text{ where } \mathbf{v}_1 = \begin{bmatrix} 3\\-1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2\\7 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 6\\21 \end{bmatrix}$$

- (A) V spans \mathbb{R}^2 because its echelon form contains a leading entry in every column.
- (B) V spans \mathbb{R}^2 because $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^2$.
- (C) V does not span \mathbb{R}^2 , because \mathbf{v}_3 is an scalar multiple of \mathbf{v}_2 .
- (D) V does not span \mathbb{R}^2 , because a set of three vectors can only span \mathbb{R}^3 .

7. The vectors $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} -1\\-1\\2 \end{bmatrix}$ form an orthogonal basis for \mathbb{R}^3 . If $\mathbf{w} = \begin{bmatrix} 4 \\ -2 \\ 4 \end{bmatrix}$, then the coordinate vector, $[\mathbf{w}]_{\mathcal{B}}$, of \mathbf{w} with respect to the basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is (A) $\begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix}$. (C) $\begin{vmatrix} 6/\sqrt{3} \\ -6/\sqrt{2} \\ 6/\sqrt{6} \end{vmatrix}$. (B) $\begin{bmatrix} 6\\-6\\6 \end{bmatrix}$.

(D) none of the above.

- 8. Let $n \ge 2$. How many of the following statements are equivalent to the $n \times n$ matrix A being invertible?
 - $\operatorname{rank}(A) \neq 0$.
 - The equation $A\mathbf{x} = \mathbf{0}$ has only one solution
 - $A = A^T$.
 - The reduced row echelon form of A is I_n .
 - The rows of A form a basis for \mathbb{R}^n .
 - (A) One (B) Two (C) Three (D) Four

9. The matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	$ \begin{array}{ccc} 4 & -7 \\ 3 & 1 \\ -1 & c \end{array} $	$\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$	is not invertible. Determine	the value of c .
(A) -6	(1	B) 6	(C) 8	(D) 10

10. If the system $x_1 - x_3 = 5$, $x_2 + x_3 = 3$, $4x_1 + 3x_2 = 7$ is written in matrix form $A\mathbf{x} = \mathbf{b}$, then the coefficient matrix A is

(A)	$\begin{bmatrix} 1 & -1 & 5 \\ 1 & 1 & 3 \\ 4 & 3 & 7 \end{bmatrix}.$	(C)	$\begin{bmatrix} 1\\1\\4 \end{bmatrix}$	$-\frac{1}{3}$	[].		
(B)	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 4 & 3 & 0 \end{bmatrix}.$	(D)	$\begin{bmatrix} 1\\ 0\\ 4 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 3 \end{array}$	$\begin{array}{c} -1 \\ 1 \\ 0 \end{array}$	$5 \\ 3 \\ 7 \end{bmatrix}$	

11. Let
$$\mathbf{u} = \begin{bmatrix} 1\\0\\-3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$. The projection of \mathbf{v} onto \mathbf{u} is
(A) $\begin{bmatrix} 1/5\\0\\-3/5 \end{bmatrix}$. (B) $\begin{bmatrix} 2/5\\0\\-6/5 \end{bmatrix}$. (C) $\begin{bmatrix} 2/5\\1/5\\0 \end{bmatrix}$. (D) $\begin{bmatrix} 4/5\\2/5\\0 \end{bmatrix}$.

- 12. Let $n \ge 2$. Which of the following is true for all $n \times n$ matrices A, B, and C, and $n \times n$ zero matrix O?
 - (A) AB = BA. (C) If AB = O, then A = O or B = O.
 - (B) If AB = AC then B = C. (D) None of the above.
- 13. Suppose A is an $m \times n$ matrix, **x** and **y** are in \mathbb{R}^n , and $A\mathbf{x} = A\mathbf{y}$. Then which of the following statements must be true?
 - (A) A is invertible. (B) $\mathbf{x} = \mathbf{y}$. (C) \mathbf{x} and \mathbf{y} are in null(A). (D) $\mathbf{y} - \mathbf{x}$ is in null(A).

14. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let **u** and **v** be two distinct, nonzero vectors in \mathbb{R}^n . Which of the following is sufficient to concluded that T is **not** one-to-one?

(A) $T(3\mathbf{v}) = T(\mathbf{u})$ (B) $T(3\mathbf{v}) = 2T(\mathbf{u})$ (C) $T(\mathbf{v}) = 2T(\mathbf{v}) + T(\mathbf{u})$ (D) $T(3\mathbf{v}) = 2T(\mathbf{v}) + T(\mathbf{u})$