Form A

Instructions: Fill in A, B or C in the Test Version section. Then enter your NAME, ID Number, CRN (under Class ID) and write A, B, or C (under Test ID) on the op-scan sheet. Darken the appropriate circles below your ID number and Class ID (CRN). **Use a number 2 pencil**. Machine grading may ignore faintly marked circles.

Mark your answers to the test questions in rows 1–15 of the op-scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation.

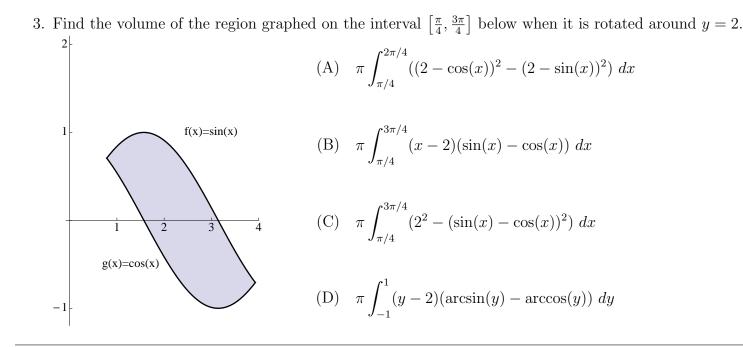
Signature: _____

Name (printed): _____

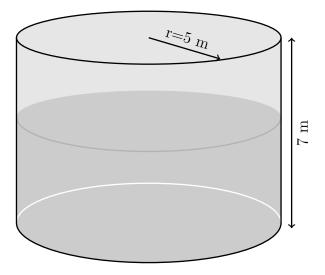
Student ID #: _____

1. The integral $\int \frac{1}{\sqrt{x^2 - 1}} dx$ can be rewritten as which of the following? (A) $\int \sec(\theta) d\theta$ (B) $\int 1 d\theta$ (C) $\int \cot(\theta) d\theta$ (D) $\int \frac{1}{\cos(\theta)\sin(\theta)} d\theta$

- 2. Evaluate $\int \frac{1}{x^3 + x} dx$. (A) $\ln |x| - \frac{1}{2} \ln |x^2 + 1| + C$ (B) $\frac{1}{2} \ln |x + 1| + \frac{1}{2} \ln |x - 1| - \ln |x| + C$
 - (C) $\ln |x| + C$ (D) $\ln |x| \frac{1}{2x^2} + C$



4. A cylindrical tank with height 7 meters and radius 5 meters is filled to a height of 4 meters with water, which has a density of 1000 kg/m³. Set up an integral to find the amount of work required to pump the water out of a spout at the top of the cylindrical tank.



- (A) 9800 $\int_0^4 25\pi (7-y) dy$
- (B) 9800 $\int_0^4 \pi y^2 (7-y) dy$
- (C) 9800 $\int_{3}^{7} 25\pi (4-y) dy$
- (D) 9800 $\int_{4}^{7} 25\pi (3-y) dy$

5. Set up an integral to find the moment about the x-axis, M_x , of the region bounded by $y = 2 - x^2$ and y = x with density $\rho = 3$.

(A)
$$\int_{-2}^{1} \frac{3}{2} \left((2 - x^2)^2 - x^2 \right) dx$$

(B) $\int_{-2}^{1} 3 \left((2 - x^2) - x \right) dx$
(C) $\int_{-2}^{1} 3 \left((2 - x^2) - x \right) \cdot x dx$
(D) $\int_{-2}^{1} \frac{3}{2} \left((2 - x^2) - x \right)^2 dx$

6. Find the average value of $f(x) = x \sin(x)$ on $[0, \pi]$.

(A) 1 (B)
$$\frac{\pi}{2}$$
 (C) π (D) $\pi^2 - 4$

- 7. Let $\sum_{n=1}^{\infty} a_n$ be a series such that $\lim_{n \to \infty} a_n = 0$ and $a_n > 0$. Let s_k denote the *k*th partial sum, $s_k = \sum_{n=1}^{k} a_n$. Which of the following statements could be true about s_k ?
 - (A) $\lim_{k \to \infty} s_k = 6.$
 - (B) $\lim_{k \to \infty} s_k = 0.$
 - (C) $s_k < 10$ for all k, but $\sum_{n=1}^{\infty} a_n$ diverges.
 - (D) $\lim_{k \to \infty} s_k = -3.$

8. Suppose a function f(x) has the following Maclaurin series

$$f(x) = \sum_{n=0}^{\infty} \frac{(x-1)^n}{n!}.$$

Which of the following statements is true?

(A)
$$f'(x) = f(x)$$
 for (B) $f''(1) = \frac{1}{2!}$ (C) $f'(1) = 0$ (D) $f(1) = 0$.

9. Which of the following series converges conditionally?

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n) + 1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

(C)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^{2n}}{n}$$

10. Let $r = 2 - 2\sin\theta$ and $r = 2\sin\theta$ be polar curves given in the graph below. To find the area of the shaded region, we would use

(A)
$$\frac{1}{2} \int_{0}^{\pi/6} (2\sin\theta)^{2} d\theta + \frac{1}{2} \int_{\pi/6}^{\pi/2} (2 - 2\sin\theta)^{2} d\theta$$

(B) $\frac{1}{2} \int_{\pi/6}^{\pi/2} (2 - 2\sin\theta)^{2} - (2\sin\theta)^{2} d\theta$
(C) $\frac{1}{2} \int_{0}^{\pi/2} (2 - 2\sin\theta)^{2} + (2\sin\theta)^{2} d\theta$
(D) $\frac{1}{2} \int_{0}^{\pi/6} 2\sin\theta d\theta + \frac{1}{2} \int_{\pi/6}^{\pi/2} 2 - 2\sin\theta d\theta$
Use the trapezoidal rule with $n = 3$ to approximate $\ln(2)$.

11. Use the trapezoidal rule with n = 3 to approximate $\ln(2)$. (Recall that: $\ln(x) = \int_{1}^{x} \frac{1}{t} dt$). (A) $\frac{7}{10}$ (B) $\frac{3}{2}$ (C) $\frac{7}{8}$ (D) $\frac{5}{21}$

12. The open interval of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{(2x-4)^n}{3^n n^3}$$

is

(A)
$$x \in \left(\frac{1}{2}, \frac{7}{2}\right)$$
 (B) $x \in (-3, 3)$ (C) $x \in (-\infty, \infty)$ (D) $x \in \left(-\frac{3}{2}, \frac{3}{2}\right)$

13. Which of the given series converges to the function $f(x) = \frac{2}{1+9x^2}$ on the appropriate interval of convergence.

(A)
$$\sum_{n=0}^{\infty} 2(-1)^n (3x)^{2n}$$
 (B) $\sum_{n=0}^{\infty} \frac{2x^{2n}}{3^n}$ (C) $\sum_{n=0}^{\infty} 2(3x)^{2n}$ (D) $\sum_{n=0}^{\infty} \frac{2(-1)^n}{(3x)^{2n}}$

14. Evaluate

(A)
$$-\frac{1}{2}$$
 (B) 0 (C) ∞ (D) $e^{-1/2}$

15. Evaluate

(A) Diverges (B)
$$\ln \left| \frac{e-1}{1/e-1} \right|$$
 (C) $\ln \left| \frac{e-1}{1/e-1} \right| - 1$ (D) 1

16. Two students are told that the lifetime T (in years) of an electric component is given by the exponential probability density function $f(t) = e^{-t}$ $t \ge 0$. They are asked to find time t=L where a typical component is 60% likely to exceed. The two students had the following approaches:

Student A: $0.6 = \int_{L}^{\infty} e^{-t} dt$ Student B: $0.6 = 1 - \int_{0}^{L} e^{-t} dt$

Which student has the correct setup to be able to find L?

- (A) Both
- (B) Student A
- (C) Student B
- (D) Neither Student