Math 2214, Fall 2016, Form A

1. A nonlinear system is given by

$$x_1' = x_2^2 - x_1 x_2.$$
$$x_2' = x_1^3 x_2^2 - x_1.$$

The matrix of the linearization at the point (1,1) is

- (a) $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. (b) $\begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$. (c) $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$. (d) $\begin{pmatrix} -1 & 1 \\ 2 & 2 \end{pmatrix}$.
- 2. A water tank initially contains 20 liters of water, in which 100 grams of salt are dissolved. Water containing 5 grams of salt per liter enters the tank at a rate of 3 liters per minute, and the well mixed solution leaves the tank at a rate of 4 liters per minute. Let Q(t) be the amount of salt in the tank. If Q is measured in grams and time in minutes, then the differential equation for Q(t) is
 - (a) Q'(t) = 15 Q(t)/5, Q(0) = 100.
 - (b) Q'(t) = 15 4Q(t)/(20 t), Q(0) = 100.
 - (c) Q'(t) = 5 4Q(t), Q(0) = 100.
 - (d) Q'(t) = 15t Q(t)/5, Q(0) = 100.

3. For the system

$$\begin{aligned} x' &= -x + 3y, \\ y' &= 2x - y, \end{aligned}$$

the origin is a

- (a) stable node.
- (b) stable focus.
- (c) saddle.
- (d) unstable focus.
- 4. You solve the initial value problem y' = 3y+t, y(1) = 1, using the Euler method with h = 0.1. Then the approximation you find for y(1.2) is
 - (a) 2.12.
 - (b) 1.8.
 - (c) 1.93.
 - (d) 1.4.
- 5. A particular solution of the equation $y^{\prime\prime\prime} + y = e^t + e^{-t}$ should have the form
 - (a) $ate^{-t} + be^t$.
 - (b) $ate^{-t} + bte^t$.
 - (c) $ae^{-t} + be^{t}$.
 - (d) $at^3e^{-t} + be^t$.

7. Consider the system

$$\begin{aligned} x' &= -x + y, \\ y' &= -y - x, \end{aligned}$$

with initial condition x(0) = 1, y(0) = 2. Then x(1) is

- (a) $2e^2 1$.
- (b) $3e^3 2e$.
- (c) $(\cos(1) + 2\sin(1))/e$.
- (d) $(2\cos(1) \sin(1))/e$.
- 8. If $x' = x^2 + 4$, and $x(0) = 2\tan(1)$, then x(0.1) is
 - (a) $2.1 \tan(1)$.
 - (b) $2\tan(1.1)$.
 - (c) $2\tan(1.2)$.
 - (d) $2\tan(1.4)$.
- 9. The solution of the initial value problem

$$t(1-t)y' = (t-3)y + \frac{1}{\sin(4-t)}, \quad y(2) = 5,$$

is guaranteed to exist on the interval

- (a) $(4-2\pi,4)$.
- (b) (1, 4).
- (c) $(4 \pi, 3)$.
- (d) $(4 \pi, 4)$.
- 10. For $t \to \infty$, the solutions of the initial value problem $y' = y^2 9$, y(0) = 2 will
 - (a) converge to -3.
 - (b) always converge to 3.
 - (c) converge to 0.
 - (d) become infinite in finite time.

- 11. The function $y = \sin t$ is not a solution of one of the following equations. Identify which it is.
 - (a) $y^{(4)} + y = 0.$
 - (b) $y'' y = -2\sin t$.
 - (c) y''' + y' = 0.
 - (d) $y^{(4)} y = 0.$
- 12. The general solution of the system $\mathbf{y}' = A\mathbf{y},$ where

$$A = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix},$$

is

(a)
$$c_1 t e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
.
(b) $c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 2t \\ 1 \end{pmatrix}$.
(c) $c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
(d) $c_1 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.