Math 2214, Fall 2016, Form A

1. A nonlinear system is given by

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2}^{2}-x_{1} x_{2} . \\
& x_{2}^{\prime}=x_{1}^{3} x_{2}^{2}-x_{1} .
\end{aligned}
$$

The matrix of the linearization at the point $(1,1)$ is
(a) $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$.
(b) $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$.
(c) $\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)$.
(d) $\left(\begin{array}{cc}-1 & 1 \\ 2 & 2\end{array}\right)$.
2. A water tank initially contains 20 liters of water, in which 100 grams of salt are dissolved. Water containing 5 grams of salt per liter enters the tank at a rate of 3 liters per minute, and the well mixed solution leaves the tank at a rate of 4 liters per minute. Let $Q(t)$ be the amount of salt in the tank. If Q is measured in grams and time in minutes, then the differential equation for $Q(t)$ is
(a) $Q^{\prime}(t)=15-Q(t) / 5, Q(0)=100$.
(b) $Q^{\prime}(t)=15-4 Q(t) /(20-t), Q(0)=100$.
(c) $Q^{\prime}(t)=5-4 Q(t), Q(0)=100$.
(d) $Q^{\prime}(t)=15 t-Q(t) / 5, Q(0)=100$.
3. For the system

$$
\begin{gathered}
x^{\prime}=-x+3 y, \\
y^{\prime}=2 x-y,
\end{gathered}
$$

the origin is a
(a) stable node.
(b) stable focus.
(c) saddle.
(d) unstable focus.
4. You solve the initial value problem $y^{\prime}=3 y+t, y(1)=1$, using the Euler method with $h=0.1$. Then the approximation you find for $y(1.2)$ is
(a) 2.12 .
(b) 1.8 .
(c) 1.93 .
(d) 1.4 .
5. A particular solution of the equation $y^{\prime \prime \prime}+y=e^{t}+e^{-t}$ should have the form
(a) $a t e^{-t}+b e^{t}$.
(b) $a t e^{-t}+b t e^{t}$.
(c) $a e^{-t}+b e^{t}$.
(d) $a t^{3} e^{-t}+b e^{t}$.
6. Which of the following direction fields is for the equation $y^{\prime}=t-$ $\sin (y)$?
(a)

(b)
(c)

,

(d)
7. Consider the system

$$
\begin{aligned}
x^{\prime} & =-x+y, \\
y^{\prime} & =-y-x,
\end{aligned}
$$

with initial condition $x(0)=1, y(0)=2$. Then $x(1)$ is
(a) $2 e^{2}-1$.
(b) $3 e^{3}-2 e$.
(c) $(\cos (1)+2 \sin (1)) / e$.
(d) $(2 \cos (1)-\sin (1)) / e$.
8. If $x^{\prime}=x^{2}+4$, and $x(0)=2 \tan (1)$, then $x(0.1)$ is
(a) $2.1 \tan (1)$.
(b) $2 \tan (1.1)$.
(c) $2 \tan (1.2)$.
(d) $2 \tan (1.4)$.
9. The solution of the initial value problem

$$
t(1-t) y^{\prime}=(t-3) y+\frac{1}{\sin (4-t)}, \quad y(2)=5
$$

is guaranteed to exist on the interval
(a) $(4-2 \pi, 4)$.
(b) $(1,4)$.
(c) $(4-\pi, 3)$.
(d) $(4-\pi, 4)$.
10. For $t \rightarrow \infty$, the solutions of the initial value problem $y^{\prime}=y^{2}-9$, $y(0)=2$ will
(a) converge to -3 .
(b) always converge to 3 .
(c) converge to 0 .
(d) become infinite in finite time.
11. The function $y=\sin t$ is not a solution of one of the following equations. Identify which it is.
(a) $y^{(4)}+y=0$.
(b) $y^{\prime \prime}-y=-2 \sin t$.
(c) $y^{\prime \prime \prime}+y^{\prime}=0$.
(d) $y^{(4)}-y=0$.
12. The general solution of the system $\mathbf{y}^{\prime}=A \mathbf{y}$, where

$$
A=\left(\begin{array}{ll}
2 & 2 \\
0 & 2
\end{array}\right)
$$

is
(a) $c_{1} t e^{2 t}\binom{1}{0}+c_{2} e^{2 t}\binom{1}{0}$.
(b) $c_{1} e^{2 t}\binom{1}{0}+c_{2} e^{2 t}\binom{2 t}{1}$.
(c) $c_{1} e^{2 t}\binom{1}{0}+c_{2} e^{2 t}\binom{1}{0}$.
(d) $c_{1} e^{2 t}\binom{1}{0}+c_{2} e^{2 t}\binom{0}{1}$.

