Form A

Instructions: Fill in A, B or C in the Test Version section. Then enter your NAME, ID Number, CRN (under Class ID) and write A, B, or C (under Test ID) on the op-scan sheet. Darken the appropriate circles below your ID number and Class ID (CRN). **Use a number 2 pencil**. Machine grading may ignore faintly marked circles.

Mark your answers to the test questions in rows 1–14 of the op-scan sheet. Your score on this test will be the number of correct answers. You have one hour to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam, and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer. Giving or receiving unauthorized aid is an Honor Code Violation.

Signature: _____

Name (printed): _____

Student ID #: _____

1. A basis for the column space of

$$A = \begin{bmatrix} 4 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

is

2. Consider the discrete dynamical system $\mathbf{x_{n+1}} = A\mathbf{x_n}$. Then $\lim_{x \to \infty} \mathbf{x_n} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ for which of the following? (A) $A = \begin{bmatrix} 0.5 & .75 \\ 0 & -2 \end{bmatrix}$ (B) $A = \begin{bmatrix} 0.5 & 0 \\ .75 & -2 \end{bmatrix}$ (C) $A = \begin{bmatrix} 0.5 & .75 \\ 0 & -0.2 \end{bmatrix}$ (D) $A = \begin{bmatrix} 1.5 & 0 \\ .75 & -2 \end{bmatrix}$

- 3. Let V be a subspace of \mathbb{R}^n and $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$ a set of vectors in V. Suppose every vector in V may be expressed as a linear combination of $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$. Then:
 - (A) $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$ span \mathbb{R}^n . (C) $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$ is a basis for V.
 - (B) $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$ are linearly dependent. (D) $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$ span V.

4. Suppose $\mathbf{v} = \begin{bmatrix} -1\\ a\\ 8 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 5\\ 3\\ 2 \end{bmatrix}$. Determine the positive value of a such that the distance between \mathbf{v} and \mathbf{w} is 11. (A) a = 8(B) a = 9(C) a = 10(D) No such a is possible 5. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that

$$T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = \left[\begin{array}{c}2\\-4\end{array}\right], \text{ and } T\left(\left[\begin{array}{c}3\\2\end{array}\right]\right) = \left[\begin{array}{c}-1\\3\end{array}\right].$$

Then $T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right)$ is
$$(A) \left[\begin{array}{c}-5\\11\end{array}\right] \qquad (B) \left[\begin{array}{c}2\\-4\end{array}\right] \qquad (C) \left[\begin{array}{c}-2\\1\end{array}\right] \qquad (D) \left[\begin{array}{c}3/2\\2\end{array}\right]$$

6. Suppose $B = \begin{bmatrix} 1 & 0 & -3 & 0 & 0 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$. If B is the row-reduced echelon form of the matrix A, what are the solutions to the matrix equation Ax = 0?

$$(A) \left\{ s \begin{bmatrix} 3\\-2\\1\\0\\0 \end{bmatrix} + t \begin{bmatrix} 0\\1\\0\\-1\\1 \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}$$

$$(C) \left\{ s \begin{bmatrix} -3\\2\\1\\0\\0 \end{bmatrix} + t \begin{bmatrix} 0\\-1\\0\\1\\1 \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}$$

$$(B) \left\{ s \begin{bmatrix} 3\\-2\\1\\0\\1 \end{bmatrix} + \begin{bmatrix} 0\\-1\\0\\1\\0 \end{bmatrix} + \begin{bmatrix} 0\\-1\\0\\1\\0 \end{bmatrix} \middle| s \in \mathbb{R} \right\}$$

$$(D) \left\{ s \begin{bmatrix} 3\\-2\\1\\0\\0 \end{bmatrix} + \begin{bmatrix} 0\\1\\0\\-1\\0 \end{bmatrix} \middle| s \in \mathbb{R} \right\}$$

7. Vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{u} are shown below:

Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Find the coordinates of $[\mathbf{u}]_{\mathcal{B}}$.

(A) $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ (B) $\begin{bmatrix} 3 \\ -12 \end{bmatrix}$ (C) $\begin{bmatrix} 7 \\ -14 \end{bmatrix}$ (D) $\begin{bmatrix} 13 \\ -11 \end{bmatrix}$

8. Let
$$A = \begin{bmatrix} a & b & 0 & c \\ 0 & d & 0 & 0 \\ e & f & g & h \\ i & j & 0 & k \end{bmatrix}$$
, where $a, b, c, d, e, f, g, h, i, j$, and k are nonzero constants. Find det A .
(A) $adgk$ (B) $adgk - cdgi$ (C) $dgk + dgi$ (D) 0

9. Let
$$S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}$$
 in $\mathbb{R}^2 : xy \ge 0 \right\}$. Determine whether S is a subspace of \mathbb{R}^2 .

- (A) S is a subspace of \mathbb{R}^2 .
- (B) S is not a subspace of \mathbb{R}^2 because it does not contain the zero vector.
- (C) S is not a subspace of \mathbb{R}^2 because it is not closed under vector addition.
- (D) S is not a subspace of \mathbb{R}^2 because it is not closed under scalar multiplication.

10. The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ scales a vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^2 by 200% in the horizontal direction and 500% in the vertical direction, then rotates the vector 90° clockwise. Determine the standard matrix A of this transformation.

(A)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 5 \end{bmatrix}$$
 (B) $A = \begin{bmatrix} 0 & 5 \\ -2 & 0 \end{bmatrix}$ (C) $A = \begin{bmatrix} 0 & 2 \\ -5 & 0 \end{bmatrix}$ (D) $A = \begin{bmatrix} 2 & -5 \\ 5 & 2 \end{bmatrix}$

11. Let A be an $m \times n$ matrix with m < n. Which of the following statements is always **false**?

- (A) The rank of A < m. (C) The rank of A = 0.
- (B) The nullity of A = m. (D) The nullity of A = 0.
- 12. A is a 4×5 matrix which is row-equivalent to

[1	0	0	0	-5^{-5}
0	1	0	0	3
0	0	1	0	6
0	0	0	1	0

. Which of these statements about

the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is true?

- (A) T is neither one-to-one nor onto, because A is not square.
- (B) T is one-to-one, because A has a pivot in every row.
- (C) T is one-to-one, because A has a pivot in every column.
- (D) T is onto, because A has a pivot in every row.
- 13. Let \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , and \mathbf{a}_4 be vectors in \mathbb{R}^4 and let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$. Which of these statements, if true, would prove that A is **not** invertible?
 - (A) rank $[\mathbf{a}_1 \ \mathbf{a}_2] = \operatorname{rank} [\mathbf{a}_3 \ \mathbf{a}_4]$
 - (B) $\mathbf{a}_1 + \mathbf{a}_2 = \mathbf{a}_3 + \mathbf{a}_4$
 - (C) The matrix $B = [\mathbf{a}_4 \ \mathbf{a}_3 \ \mathbf{a}_2 \ \mathbf{a}_1]$ is invertible.
 - (D) A^T has only one eigenvalue.

14. Let $A = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$. Determine the eigenvalue associated with $\mathbf{v} = \begin{bmatrix} 1+i \\ i-1 \end{bmatrix}$, which is an eigenvector of A. (A) 3-4i (B) 3+4i (C) 7-i (D) 7+i