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1. Two students were asked to determine the area bounded by the curves y = x2 and y = 2x+ 3. Which
student is correct?
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Student I: A =

∫ 3

−1

[
(2x+ 3)− x2

]
dx

Student II: A =

∫ 9

0

[
√
y −

(
1

2
(y − 3)

)]
dy

(A) Only Student I is correct.

(B) Only Student II is correct.

(C) Both Student I and Student II are correct.

(D) Neither student is correct.

2. Which of the following is equivalent to

∫
x2 ln(x) dx ?

(A) x2 ln(x)−
∫

2 dx

(B) x2 ln(x)−
∫

1

3
x2 dx

(C)
1

3
x3 ln(x)−

∫
1

3
x2 dx

(D)
1

3
x3 ln(x)−

∫
2 dx

3. Which integral is obtained after applying an appropriate trigonometric substitution to∫
1√

25x2 − 4
dx ?

(A)
1

5

∫
dθ

(B)
1

5

∫
sec(θ) dθ

(C)
1

2

∫
sec(θ) dθ

(D)
1

2

∫
1

tan(θ)
dθ



4. Which value of k will make f(x), shown below, a probability density function?

f(x) =

{
k (2− x) , 0 < x < 6

0 , otherwise

(A) No such value of k exists since it is impossible to find a k so that

∫ ∞
−∞

f(x) dx = 1.

(B) No such value of k exists since it is impossible to find a k so that f(x) is greater than or equal to
zero everywhere.

(C) No such value of k exists since k must be positive.

(D) k must be equal to −1

6
.

5. Set up the integral to determine the volume obtained by revolving the region bounded by the x-axis,

y = sinx, x = 0, and x = π about the line x = −π
2

.

(A) V =

∫ π

0

2π (sinx)
(
x+

π

2

)
dx

(B) V =

∫ 1

0

π
(

sin−1 y − π

2

)2
dy

(C) V =

∫ π

0

2π (sinx)
(
−π

2
− x
)
dx

(D) V =

∫ 1

0

2π (sinx)
(
x+

π

2

)
dx

6. A student was asked to evaluate two limits and gave the following answers:

I : lim
x→1

x− 1

x2
=

1

2
II : lim

x→∞

(
1 +

2

x

)x
= 1

Which of the following is TRUE?

(A) Only evaluation I is correct.

(B) Only evaluation II is correct.

(C) Both evaluations are correct.

(D) Neither evaluation is correct.



7. Evaluate

∫ ∞
0

2xe−x
2

dx .

(A) 0

(B) 1

(C) e1

(D) The integral diverges.

8. The following parametric curve has a horizontal tangent at t = 2. Determine the value of a.

x(t) =
a

2
t2 + t, y(t) = 2t3 − at,

(A) −1

(B) −1

2

(C) 8

(D) 24

9. Find the coefficient of the ln |x2 + 1| term in the evaluation of

∫
5

x3 + x
dx .

(A) 5

(B) −5

2

(C) −1

(D) There is no such term in the evaluation of

∫
5

x3 + x
dx .

10. Which of the following polar coordinates is equivalent to the Cartesian coordinates (x, y) = (−1, 1)?

(A) (r, θ) =

(
1,

3π

4

)

(B) (r, θ) =

(
1,

2π

3

)

(C) (r, θ) =

(√
2,

3π

4

)

(D) (r, θ) =

(√
2,

2π

3

)



11. Consider the series
∞∑
n=1

an with nth partial sum sn =
n∑
i=1

ai = cos

(
7

n

)
. If possible, find the limit of

the sequence {an}.

(A) 0

(B) 1

(C) The limit does not exist.

(D) There is not enough information to determine the limit.

12. The series
∞∑
n=0

5n+ 6√
2n3 + 4

(A) Diverges by the Divergence Test.

(B) Diverges by the Limit Comparison Test.

(C) Converges by the Ratio Test.

(D) Converges by the Comparison Test.

13. Let T3(x) = c0 + c1(x− 1) + c2(x− 1)2 + c3(x− 1)3 be a third degree Taylor polynomial for
f(x) = x4 + x3 + x2. Find c3.

(A) −3

(B) 1

(C) 5

(D) 10

14. Find the first three nonzero terms of the Maclaurin series for

f(x) =
ex − e−x

2

You may use ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

(A) x+
x3

3!
+
x5

5!

(B) 1 +
x2

2!
+
x4

4!

(C)
x

3!
+
x3

5!
+
x5

7!

(D) 2 + x2 +
x4

2


