Form A

${\bf Instructions:}$

- Fill in A, B or C in the Test Version section.
- Enter your NAME, ID Number, CRN (under Class ID) and write A, B, or C (under Test ID) on the op-scan sheet.
- Darken the appropriate circles below your ID number and Class ID (CRN). Use a number 2 pencil. Machine grading may ignore faintly marked circles.
- Mark your answers to the test questions in rows 1–14 of the op-scan sheet. Your score on this test will be the number of correct answers.
- You have **one hour** to complete this portion of the exam. Turn in the op-scan sheet with your answers, this exam and all scrap paper at the end of this part of the final exam.

Exam Policies: You may not use a book, notes, formula sheet, or a calculator or computer.

Name (printed): _____

Student ID #: _____

Honor Pledge: I have neither given nor received unauthorized assistance on this exam.

Signature: _____

1. Consider the vertical and horizontal asymptotes of the following function:

$$f(x) = \begin{cases} \frac{x^2 - 25}{x^2 - 2x - 15} & , \quad x < 5, \quad x \neq -3\\ \frac{2e^x}{7 + e^x} & , \quad x > 5. \end{cases}$$

Which one of the following statements is TRUE?

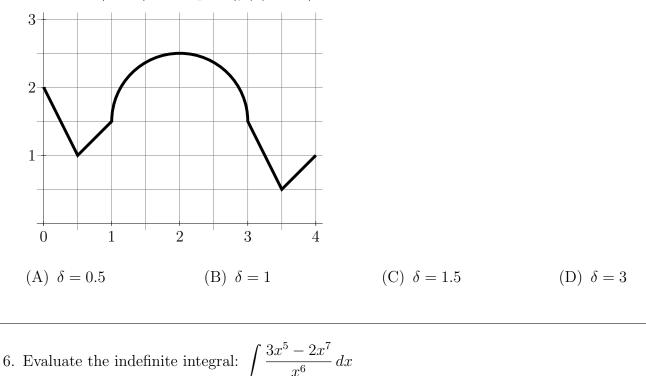
- (A) f(x) has exactly one vertical asymptote and one horizontal asymptote.
- (B) f(x) has exactly one vertical asymptote and two horizontal asymptotes.
- (C) f(x) has exactly two vertical asymptotes and one horizontal asymptote.
- (D) f(x) has exactly two vertical asymptotes and two horizontal asymptotes.
- 2. Let $f(x) = \cos x$. Find $f^{(8)}(x) f^{(5)}(x)$.
 - (A) $2\sin x$
 - (B) $\cos x + \sin x$
 - (C) $\sin x \cos x$
 - (D) 0
- 3. Find the linearization L(x) centered at x = e for $f(x) = \ln \sqrt{x}$.
 - (A) $L(x) = 1 + \frac{x}{2e}$ (B) $L(x) = \frac{x}{2e} - \frac{1}{4}$ (C) $L(x) = \frac{x}{\sqrt{e}} - 1$ (D) $L(x) = \frac{x}{2e}$
- 4. Which of the following functions

$$f(x) = x^{2/3}$$
 on $[-1, 8]$, $g(x) = x^{4/5}$ on $[0, 1]$

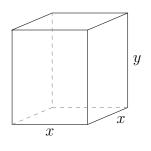
satisfy the hypotheses of the Mean Value Theorem on their respective intervals?

- (A) Only f(x). (C) Both f(x) and g(x).
- (B) Only g(x). (D) Neither f(x) nor g(x).

5. The graph of a function f(x) on [0, 4] is given below. Find the **largest value** of $\delta > 0$ such that for all x with $0 < |x - 3| < \delta$ implies |f(x) - 1.5| < 1



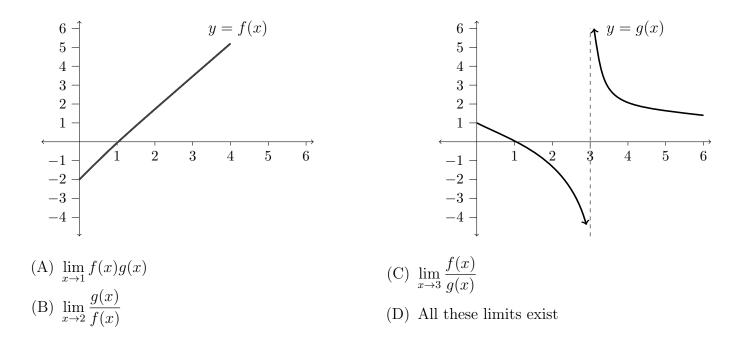
- (A) $\frac{\frac{1}{2}x^{6} \frac{1}{4}x^{8}}{\frac{1}{7}x^{7}} + C$ (B) $\left(\frac{1}{2}x^{6} - \frac{1}{4}x^{8}\right)\ln(x^{6}) + C$ (C) $\frac{1}{5}x^{-5}\left(\frac{1}{2}x^{6} - \frac{1}{4}x^{8}\right) + C$ (D) $3\ln(x) - x^{2} + C$
- 7. You want to minimize the cost of building a rectangular box with capacity of 100 cubic meters. The box must have a square top and bottom, with edge length x, as in the picture below. The material for the sides costs \$2 per square meter, and for the top and bottom costs \$3 per square meter. Which function should be minimized?



(A) $f(x) = x(200 - 6x^2)$ (B) $f(x) = x(200 - 6x^2) - 100$ (C) $f(x) = 6x^2 + \frac{800}{x}$ (D) $f(x) = x(100 - 6x^2) - 200$

Page 3 of 5 — Form A

8. The graphs of f and g are given below. Determine which limit **does NOT** exist.



- 9. The tangent line to the ellipse $5x^2 4xy + 5y^2 = 1$ at the point $\left(0, \frac{1}{\sqrt{5}}\right)$ has slope:
 - (A) $\frac{4\sqrt{5}}{5\sqrt{5}+2}$ (B) $\frac{2}{5}$ (C) 1 (D) The tangent line is vertical

10. Let f and g be continuous functions, and suppose that $\int_{0}^{2} f(x) dx = 5$ and $\int_{0}^{2} g(x) dx = 7$. Find $\int_{0}^{2} 2f(x) - 3g(x) + 10 dx$. (A) 9 (B) 51 (C) 8 (D) -1

11. What is TRUE about the function $F(x) = \int_{5}^{\sin(x)} e^{t^2} dt$?

- (A) F(x) is an increasing function for all x values.
- (B) $F'(x) = e^{\sin^2(x)} 5.$
- (C) F(x) is decreasing on the interval $(\pi/2, \pi)$.
- (D) F(x) is a decreasing function for all x values.

12. Consider the following function

$$f(x) = \begin{cases} \frac{1}{x} & 0 < x < 1\\ \ln(x) & x \ge 1. \end{cases}$$

Which one of the following statements is TRUE?

- (A) f has a critical number at x = 1.
- (B) The absolute maximum occurs at x = 1.
- (C) f has a local maximum at x = 1.
- (D) f is continuous at x = 1.
- 13. Use Newton's method with initial approximation $x_1 = 2$ to find x_2 , the second approximation to a root of $f(x) = x^2 3$.
 - (A) $\frac{3}{2}$ (B) $\frac{9}{4}$ (C) $\frac{3}{4}$ (D) $\frac{7}{4}$

14. When you use the upper Riemann sum with n = 4 sub-intervals to estimate $\int_{-4}^{4} |x| dx$, you get:

(A) 0 (B) 16 (C) 24 (D) 48