Math 2214, Fall 2015, Form A

1. The general solution of the equation

$$
y^{\prime \prime}+y=\ln t
$$

can be found using the form
(a) $u(t) \cos t+v(t) \sin t+w(t) \ln t$.
(b) $u(t) e^{t}+v(t) e^{-t}+w(t) \ln t$.
(c) $u(t) \cos t+v(t) \sin t$.
(d) $u(t) e^{t}+v(t) e^{-t}$.
2. The solution of the initial value problem

$$
\cos 2 t y^{\prime \prime}+t^{2} y^{\prime}=\ln t, \quad y(\pi / 2)=2, \quad y^{\prime}(\pi / 2)=-1
$$

is guaranteed to exist on the interval
(a) $\pi / 4<t<3 \pi / 4$.
(b) $-\pi / 4<t<\pi / 4$.
(c) $-\pi / 4<t<3 \pi / 4$.
(d) $t>0$.
3. The solution of the initial value problem

$$
y^{\prime \prime}+\alpha y^{\prime}+\beta y=-4 \cos 4 t-18 \sin 4 t, y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}
$$

is $y(t)=e^{-t}+2 e^{2 t}+\sin 4 t$. Then, α, β, y_{0} and y_{0}^{\prime} are given by
(a) $\alpha=1, \beta=-2, y_{0}=3$, and $y_{0}^{\prime}=7$.
(b) $\alpha=1, \beta=2, y_{0}=3$, and $y_{0}^{\prime}=9$.
(c) $\alpha=-1, \beta=1, y_{0}=3$, and $y_{0}^{\prime}=3$.
(d) $\alpha=-1, \beta=-2, y_{0}=3$, and $y_{0}^{\prime}=7$.
4. What is the integrating factor for the equation

$$
y^{\prime}+\frac{1}{t^{2}+1} y=\tan (t) ?
$$

(a) $\mu(t)=e^{\arctan (t)}$.
(b) $\mu(t)=e^{\tan (t)}$.
(c) $\mu(t)=e^{\frac{t}{t^{2}+1}}$.
(d) $\mu(t)=e^{-\left(t^{2}+1\right)}$.
5. Suggest a trial form for the particular solution to the following equation

$$
y^{\prime \prime}+4 y^{\prime}+3 y=t^{2} e^{3 t}+\cos (3 t)
$$

(a) $y_{P}(t)=t e^{3 t}\left(A t^{2}+B t+C\right)+D \cos (3 t)$.
(b) $y_{P}(t)=e^{3 t} A t^{2}+B \sin (3 t)+C \cos (3 t)$.
(c) $y_{P}(t)=t e^{3 t}\left(A t^{2}+B t+C\right)+D \sin (3 t)+E \cos (3 t)$.
(d) $y_{P}(t)=e^{3 t}\left(A t^{2}+B t+C\right)+D \sin (3 t)+E \cos (3 t)$.
6. You use the Euler method with a step size of 0.1 to solve the initial value problem

$$
x^{\prime}=x, \quad x(0)=2 .
$$

Then your approximation for $x(0.3)$ is
(a) 2.6 .
(b) 2.662 .
(c) 2.699 .
(d) 2.653 .
7. A 2×2 matrix A has a double eigenvalue $\lambda=2$. If the matrix has only one eigenvector $\bar{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and one generalized eigenvector $\bar{v}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$, then the general solution has the form
(a) $\bar{y}(t)=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}(2+2 t) e^{2 t} \\ (1-3 t) e^{2 t}\end{array}\right]$.
(b) $\bar{y}(t)=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}(2 t+2) e^{2 t} \\ (t-3) e^{2 t}\end{array}\right]$.
(c) $\bar{y}(t)=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}2 t e^{2 t} \\ t e^{2 t}\end{array}\right]+c_{3}\left[\begin{array}{c}2 e^{2 t} \\ -3 e^{2 t}\end{array}\right]$.
(d) $\bar{y}(t)=c_{1}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}2 e^{2 t} \\ e^{2 t}\end{array}\right]+c_{3}\left[\begin{array}{c}2 t e^{2 t} \\ -3 t e^{2 t}\end{array}\right]$.
8. The following figure shows a direction field. This direction field is for the equation
(a) $x^{\prime}=t^{2}-x$.
(b) $x^{\prime}=t-x^{2}$.
(c) $x^{\prime}=x^{2}-t$.
(d) $x^{\prime}=x-t^{2}$.

9. The system

$$
x^{\prime}=-x+y, \quad y^{\prime}=x(x+y-2)
$$

has a stationary point at $x=y=1$. This point is a
(a) center.
(b) saddle.
(c) node.
(d) focus.
10. Consider the equation

$$
t^{2} y^{\prime \prime}-t y^{\prime}-3 y=0 \quad t>0
$$

Which of the following functions solve the equation?
I: $\frac{1}{t}$
II: t
III: t^{2}
$\mathbf{I V}: t^{3}$
(a) II and III.
(b) II and IV.
(c) I and III.
(d) I and IV.
11. A forced oscillation is described by the equation

$$
u^{\prime \prime}+0.2 u^{\prime}+25 u=\cos (\omega t)
$$

You should expect particularly large oscillations when ω is
(a) close to 25 .
(b) small.
(c) large.
(d) close to 5 .
12. The general solution of the system $\mathbf{y}^{\prime}=A \mathbf{y}$, where

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

is
(a) $c_{1} e^{t}\binom{1}{1}+c_{2} e^{-t}\binom{-1}{1}$.
(b) $c_{1}\binom{\cos t}{-\sin t}+c_{2}\binom{\sin t}{\cos t}$.
(c) $c_{1} e^{t}\binom{1}{-1}+c_{2} e^{-t}\binom{-1}{-1}$.
(d) $c_{1}\binom{\cos t}{\sin t}+c_{2}\binom{\sin t}{\cos t}$.

